Pathways towards a Modelling and Architecture Language for Interoperable Cyber-Physical Systems

Georg Weichhart, Hervé Panetto, Wided Guérdia, Gash Bhullar and Néjib Moalla

Founding of IFIP 5.8
Enterprise Interoperability 2008

Workshop starts 10:30

IFAC CC 5 and TC5.x chairs
INCOM2018
Workshop 8.

Pathways towards a Modelling and Architecture Language for Interoperable Cyber-Physical Systems

18 novembre 2020
10h30 - 12h30

Chair: Georg Weichhart, Hervé Panetto

Rethinking Interoperable Cyber-Physical Systems (CPS) as Interactive Behavior Designs.
Christian Stary

Path simulation in BPMN workflow using resource aggregation.
Kawtar Ougaabal, Grégory Zacharewicz, Yves Ducq and Said Tazi

How to design a smart factory?
Magnus Åkerman, Patrik Fager and Åsa Fast-Berglund

Pathways to CP(P)S Modelling & Architecting.
Georg Weichhart, Hervé Panetto, Wided Guèrdia, Gash Bhullar and Néjib Moalla

Join session Close
Pathways to CP(P)S Modelling & Architecting

Georg Weichhart, Hervé Panetto, Wided Guérdia, Gash Bhullar and Néjib Moalla

I-ESA 2020 Workshop
Interoperable CPS Modelling & Architecting (I-CPS 2020)
EFFRA's Connected Factories

1. Spreadsheets, text editors and paperwork
 - Excel / Word Based ERP
 - Excel / Word Based MOM
 - Manual data acquisition

2. Software and data silos
 - Dedicated ERP, Software implemented
 - Dedicated MOM, Software implemented
 - Data acquisition, monitoring, analysis, (SCADA) - isolated systems

3. Connectivity
 - MOM-ERP systems connected
 - MOM and SCADA / PLC systems, connected
 - IoT enabled SCADA, MOM-MES, ERP (...) connectivity

4. Off-line optimisation
 - Off-line Digital Manufacturing, Process Optimisation on factory level
 - Off-line Digital Manufacturing, Optimisation on machine level
 - Humans actively connected

5. Realtime optimisation
 - Autonomous, Online Realtime Digital Manufacturing, Process Optimisation on factory level
 - Autonomous, Online Realtime Digital Manufacturing, Process Optimisation on machine level
 - Platform enabled optimisation
Pathways for Interoperable Cyber-Physical (Production) Systems

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
<th>Level IV</th>
<th>Level V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Closed Systems</td>
<td>System specific APIs</td>
<td>Open APIs</td>
<td>Standards</td>
<td>Infrastructure for Self-Organization of systems-of-systems</td>
</tr>
<tr>
<td>Semantics</td>
<td>Data Silos</td>
<td>Semantic Description</td>
<td>Ontological Data Structures</td>
<td>Open Data Sets</td>
<td>Advanced Reasoning and Planning of Agents</td>
</tr>
<tr>
<td>Organizational</td>
<td>Isolated Group of People</td>
<td>Hierarchies</td>
<td>Process Management</td>
<td>Agile Teams</td>
<td>Enterprise as Complex Adaptive System</td>
</tr>
<tr>
<td>Aspect</td>
<td>Level I</td>
<td>Level II</td>
<td>Level III</td>
<td>Level IV</td>
<td>Level V</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>System</td>
<td>Isolated System</td>
<td>Adaptive System</td>
<td>Connected Systems</td>
<td>System-of-system</td>
<td>Cyber-Physical SoS</td>
</tr>
<tr>
<td>Model</td>
<td>Static Model of a system</td>
<td>Dynamic Model / Simulation</td>
<td>Heterogeneous models</td>
<td>Distributed Systems modelling</td>
<td>Agent-based modelling and negotiation</td>
</tr>
<tr>
<td>Interop. Environment</td>
<td>Compatible</td>
<td>Tight Integration</td>
<td>Standard Interfaces</td>
<td>Loose Integration</td>
<td>Federated Interoperability</td>
</tr>
</tbody>
</table>